Quiz 7: May 12, 2016	
Left Neighbor:	Right Neighbor:
Name:	Student ID:
Section TA:	

This is a closed book quiz

- 1. (2 points) Show that $\sum_{i=k_n+1}^{4k_n} \frac{1}{i} \ge 1$. If you can't do that, for 1 point, show that $\sum_{i=k_n+1}^{4k_n} \frac{1}{i} \ge \frac{3}{4}$.
- 2. (4 points) Prove that $\forall n \exists k_n \in$ the natural numbers, $\sum_{i=1}^{k_n} \frac{1}{i} \geq n$ by induction. You can use the result above, whether or not you successfully proved it, and you can assume that $k_{n+1} = 4k_n$. Make sure you give the Basis step (1 point), the Inductive Hypothesis (1 point) and the Inductive Step (2 points).

3. (5 points) Prove that $F(n) < 2^n$ by induction on n (where F(n) is the n'th Fibonacci number, F(0) = 0 and F(1) = 1).