Quiz 7: May 12, 2016

Left Neighbor: \qquad
Name: \qquad
Section TA:

This is a closed book quiz

1. (2 points) Show that $\sum_{i=k_{n}+1}^{4 k_{n}} \frac{1}{i} \geq 1$. If you can't do that, for 1 point, show that $\sum_{i=k_{n}+1}^{4 k_{n}} \frac{1}{i} \geq \frac{3}{4}$.
2. (4 points) Prove that $\forall n \exists k_{n} \in$ the natural numbers, $\sum_{i=1}^{k_{n}} \frac{1}{i} \geq n$ by induction. You can use the result above, whether or not you successfully proved it, and you can assume that $k_{n+1}=4 k_{n}$. Make sure you give the Basis step (1 point), the Inductive Hypothesis (1 point) and the Inductive Step (2 points).
3. (5 points) Prove that $F(n)<2^{n}$ by induction on n (where $F(n)$ is the n'th Fibonacci number, $F(0)=0$ and $F(1)=1$.
